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Abstract—The steady state response of a deep, narrow, rectangular foundation to antiplane shear waves 1s
studied. Consideration is given first to the dynamic response of a smgle rigid line inclusion This result is
used to model a rectangular foundation in a manner similar to Haritos and Keer who studied the problem of
a rigid block partially embedded in an elastic half-space. Because the problem is antiplane, the results
arrived at for the deep, narrow, rectangular foundation also apply to a shallow, wide, rectangular
foundation.

INTRODUCTION

In recent years the problem of designing earthquake resistant structures has become increas-
ingly important. Fundamental to this problem is understanding the interaction between the soil
and structure. Efforts have proceeded in two general directions. One method adapts the finite
element method to solve wave propagation problems for semi-infinite domains([1]. The results
can be used to estimate dynamic compliances for fairly complex foundation geometries and a
wide range of soil properties[2]. Another line of attack makes use of analytical tools such as the
boundary integral method, the integral transform method, and the Green’s function method.
More idealized foundation shapes are treated (e.g. semi-cylindrical[3, 4], rectangular[5-7],
semi-elliptical [8), strip[9-12]) with these methods. However, although limited, they offer some
advantages over the finite element method in that results can often lead to exact.or asymptotic
solutions and offer no difficulty in satisfying the radiation conditions inherent in wave pro-
pagation problems for semi-infinite domains[1]. The development of analytical expressions for
soil-structure interaction is important because, as demonstrated by Lee and Trifunac{13], only
analytical results can provide a complete check on approximate methods used in the solution of
a problem,

In this paper the soil-structure interaction problem for a deep, narrow rectangular foun-
dation is studied (Fig. 1). The soil is represented by a homogeneous, isotropic, linearly elastic
half-space and the loading on the foundation is represented by antiplane shear waves with
harmonic time dependence. The foundation is represented by rigid inclusions in a manner
similar to Haritos and Keer[14].

The paper is organized as follows. First, the equations of motion for a rigid line inclusion are
formulated using the procedure of Thau[15). Next, making use of this result, the equations of
motion for a deep, narrow rectangular foundation are given and the associated assumptions and
approximations are explained. The numerical procedure used to solve the equations is des-
cribed and finally the -numerical resuits are discussed.

Because of the nature of the antiplane formulation of this problem, similar resuilts and
conclusions arrived at for a deep, narrow rectangular foundation also apply to a shallow, wide
rectangular foundation.

RIGID LINE INCLUSION
Formulation
The geometry and coordinate system are depicted in Fig. 2. A rigid line inclusion is
embedded a unit depth in an elastic half-space with density p and shear modulus u. The surface
of the half-space is free of tractions. A state of antiplane strain is treated in which u, =
u,(x, y, t) is the only non-zero displacement component. This represents the limiting case for
the deep, narrow rectangular foundation, i.e. Ala = 0.

1The authors are grateful for support from the National Science Foundation, grant CME 7918015,
b
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Fig. 1. Foundation geometry.

Fig. 2. Rigid line inclusion.

Incident upon the inclusion is a plane time harmonic shear wave with amplitude unity. It has
the form

1 (x, y, £) = w(x, y) e~ = ght-xcon o4y un ) ot )

where k is the dimensioniess wave number, « is the frequency, and 4 is the angle of incidence.
Since the time harmonic response of the inclusion, A e~ say, is to be calculated, the total
field is written as

u(x, y, 1) = wix, y) e + w')(x, y) e )

where w(x, y) e~ is the scattered field satisfying Helmholtz’ equation,

vz w(-f) + k2 w(s) - 0 (3)
boundary conditions,
[WO(x,0)+ wXx, 0] e =Ae™ (0<x<]) @)
and
(B (s}
[+ 2209+ n 220 p]e™=0 D<o ®

as well as the usual radiation conditions. In the sequel, the factor e™ is dropped.
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Fig. 3. Rigid line inclusion: equivalent full-space problem.

The equivalent full-space problem is depicted in Fig. 3. Here the “incident” field takes the
form

w(x, y) = e** %92 cos (kx cos 6). ©6)

Note that the above automatically satisfies the zero traction condition on the surface of the
half-space. Equation (6) represents the incident field plus the wave reflected from the half-space
boundary in the absence of the line inclusion.

By extending the domain of w)(x, y) to x <0, the field for the full-space problem is

w(x, y) = wi*(x, y) + w(x, y) ™
where
Wz, y) = w(~x, y) ®
and
Vw+kPw=0 ©
with
wix0)=A |x]<l. (10)

Equation (8) guarantees that the zero traction condition is identically satisfied.
Method of solution

Following Thau[15] the scattered field is calculated in two parts: the diffracted field w,(x, y)
and the radiated field wy(x, y). Thus

w(x, y) = w(x, y) + wi(x, y) + Awy(x, y) (1
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where w,(x, y) and wy(x, y) are determined by solving

Viw, +kw,=0, j=1,2 (12)
with

W (x, 00+ wy(x,00=0  |x|<1 13)

win0)=1 |x|<l. (14)

It is important to emphasize that w,(x, y) is the field representing the diffraction of the
incident field by the inclusion held fixed while wxx, y) represents the radiated field from the
inclusion translating with displacement A e~ in the absence of an incident field. The resultant
z-directed force from these two problems will be equated to — uk*MrA where My is the
normalized mass per unit length associated with the inclusion.

The following representation is used for both fields:

wix )= [ BOBOEV(s-xF+yNds (=12 1)
where
b,(s)=%‘§’1(s, o*)—%‘gl(s, 0) (16)

is proportional to the jump in shear stress across the inclusion[17] and Hy" () is a Hankel
fuaction of the first kind of order zero[18]. Equation (15) was derived using integral transform
techniques{16] although other methods will yield an identical result{17].

The resultant z-directed forces from the two problems are given by

F=u j'l bo)ds (=12 17

where F, is the driving force and F, the impedance.
Equation (15) is integrated by parts to yield the resuit

wi(s, 3) =~ § BUOYHOKV(1+ 3P+ ) + BV - xP+ y)]

—éf_‘l Bls) \/«:(_._s;x+ ; )H“"(k\/((s —xP+y)ds  (=1,2)

(18)

where
Bo=[ b@de (=1 (19)
B(l)=pu™'F, By)=A"4"'F, (20)

and H,“(-) is the Hankel function of the first kind of order one[18].
Substituting eqn (19) into eqns (13) and (14) gives

B0 (1 0Gk1+ 5+ HiGkl1 - 2]

+;lr'f_l] B[(S) [T_:l-_-;#‘;—ksm (s— X)N(k's —xD] ds = —4f,(X) D
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where
fitx) = - w(x,0), 22)
filx)=1, (23)
and
N(k]s — x|) = H\"(k|s — x|) + 2i{ wk|s — x}. (24

Upon solution of these Cauchy integral equations, A is determined from
~ pk*MrA=F, +AF, (25)

Therefore

| +FJ ©6)

Numerical solution
In order to obtain a numerical solution, eqn (21) is modified by the transformation

B(s)=sB(D+d(s) (=12 @7

where @,(s) can be shown to exhibit the properties

#(8) =~ (- 5) 28
é(s)=(1-5Y)'""¥(s) 29
(< [s|sl. (30)

The result is
3 B(D) f " HO(Ks - x) ds
1
f ¢,(s)[—1—+—— sgn (s - X)N(kls - x|)] 5= —4f(x) 31)
(=12 |xl<L
The above equation is solved using the coliocation scheme of Erdogan and Gupta[19]. Upon

application of the Gauss-Chebyshev integration formula we obtain the system of algebraic
equations

p) It .p,(:,,)[ +mc(t,,x,)] = : H%Ks-x)ds=-4fx) (D)
where
p=12,...,N+1
x, =cos [#(2p — /AN +1)] (33)
t, = cos [ngl(N +1)] (34)
x(lg X,) = '—’2'—1-‘ sgn (4, — x,)N(k|t, - x,)). (35)

The system provides N + 1 equation for the N + 1 unknowns ¢(t,), ..., ¥(ty), and B(1). In
the present computations, N was chosen as an even integer. The integral of the Hankel
function was evaluated using a seven point Lagrange interpolation scheme of a table in
Ref.[18].
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Fig. 4. Foundation of finite thickness: equivalent full-space problem.

FOUNDATION OF FINITE THICKNESS
The results of the previous section are now used to formulate the problem of a deep,
narrow, rectangular foundation embedded a unit depth in an elastic half-space. The thickness to
depth ratio is equal to € where 0 < € <1 and the incident field is the same as before.
The boundary conditions for the equivalent full-space problem (Fig. 4) are

w(x, —§) A |x<I1 (36)
w(x, %) =A lxj<1 3D
w(l,y)=A lyl < e2 (38)
w(i-1,y)=A |yl < €2. (39)

The foundation is represented by two rigid line inclusions placed a distance ¢ apart. Along
these inclusions boundary conditions (36) and (37) are imposed. Boundary conditions (38) and
(39) are not satisfied. However, this is not a great disadvantage since we wish to calculate
impedance functions for the foundation which are “global” properties. The boundary con-
ditions are violated “locally,” i.e. in the neighborhood of x = + 1, to simplify the analytical
treatment of the problem. This is similar to the procedure used by Haritos and Keer[14] to
analyze the problem of an elastic half-space in which a perfectly bonded, rigid rectangular
block is partially embedded.

An additional consideration is that the material between the two inclusions should move as a
rigid body. Asymptotic analysis of the interior problem for the Helmholtz equation in a long,
narrow, rectangular strip with boundary conditions (36) and (37) and arbitrary boundary
conditions at the ends reveals that for low frequencies w ~ A in the strip and deviates from that
only in the boundary layer of thickness 0(¢/2) near the ends of the strip (see Appendix). Thus,
for low frequencies ((ke)* < 1) this model will give adequate results for the determination of the
impedance functions and the time harmonic response of the foundation.

The total field is written as

w(x, y) = w*7(x, y) + wix, y) + wilx, y) + Aw3(x, y) + Aw3(x, ¥) (40)
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where

Wi, y) = 1 f b(s)H"’(k\/((s x)2+( 2) ))ds, G=1,2). @1)

The unknowns are determined from

w""”(x, —i) +w (x, 2) + w,(x, —%) x| <1 42)
w“*”(x, 2) +w; (x, )+ w} (x, ) =0 [x|<1 43)
w;(x )+ w3 (x, ) =1 |xj<1 44)

wz( 2)+w,( =1 k<1 @45)

As before, eqn (41) is integrated by parts and substituted into eqns (42)-(45). The resulting
system of Cauchy integral equations can be uncoupled. The uncoupled equation takes the form:

iBi0] ]'1 HE (ks - xds = ] " BV (s - 372+ ) ds )

+1 f ' ¢7(s)[sl "’"‘ gn (s — x)N(k]s — x|)

s BV (5 - 37+ €) | ds = - 415(2) )

where
Bi() =%(B,’(1) +BY1) (=12
fix)= w“")(x, ‘%) + Wam( % %)
fi0=2,  fix=0.

The definition of the Bj(1)’s is the same as before. Also, the numerical scheme described in
the previous section is applicable here without modification.
Upon solution of the integral equations, A is determined from

~ uk*MeA = F; + Fi + A(F; + F3) (CY)]
where
Mg = Mg+ M; 48)
Fi+ F; = p[Bi(1)+ Bi(1)} (49)
F3+ F; = — uk®Ms + p[B3(1)+ B3(1)). (50)

The quantity M is the ratio of the mass per unit length of the foundation made of soil to the
mass per unit length of a unit cube of soil. The quantity Mj is the ratio of the mass per unit
length of the foundation to the mass per unit length of a unit cube of soil that is in excess of
M;. Thus, My represents the ratio of the total mass per unit length of the foundation to the
mass per unit length of a unit cube of soil.
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Equation (49) gives the driving force and eqn (50) gives the impedance for the massless
foundation.
Therefore
Fi1+ Fy

A= |, + B Fl Gh)

RESULTS

Figures 5 and 6 give the dynamic response of a single rigid line inclusion. The amplitude of
motion |4] is plotted versus the dimensionless wavenumber k. The quantity M is the mass per

3 —

k
Fig. 5. Response of ngid line inclusion My =0.25

Fig 6. Response of rigid line inclusion Mg =100



Dynamic response of an embedded rectangular foundation 257

unit length of the inclusion normalized with respect to the mass per unit length of a unit cube of
soil. The plots are for My =0.25 and 1.00 and @ =0, #/4, and /2.

Figure 5 shows that for My =0.25 and 6= #/2 (grazing incidence) the inclusion moves
essentially like the half-space would move in the absence of the inclusion. For the other angles
of incidence, |A|] is seen to change significantly with changes in k

Figure 6 shows that |A| departs significantly from the free-field amplitude (equal to 2) for
certain values of k. This can be understood in terms of an equivalent single degree of freedom
system. Since the embedment depth is fixed, the equivalent elastic spring and dashpot constants
are fixed. Therefore increasing the mass results in the reduction of the equivalent natural
frequency and fraction of critical damping(8].

]

Fig. 7. Foundation response My =0.25, e=0.1.

34

4]

Fig. 8. Foundation response Mp = 1.00, e =0.1
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Figures 7 and 8 give the dynamic response of a foundation of finite thickness. As before, the
amplitude of motion A| is plotted versus the dimensionless wavenumber k. The cases reported
here are for My =0.25 and 1.00, e =0.1 and 6 =0, nf4, and =/2.

The resuits for the foundation of finite thickness exhibit characteristics similar to those for
the rigid line inclusion. Figure 7 shows that for My =025, ¢=0.1, and 0= /2 (grazing
incidence) the foundation moves essentially like the haif-space in the absence of the foun-
dation.

Figure 8 shows that |A| can depart significantly from the free-field motion. This can also be
understood in terms of an equivalent single degree of freedom system. The results obtained
here are similar to those of Wong and Trifunac[8)] for a semi-elliptical foundation whose minor
axis to major axis ratio is 0.05.

Figures 9 and 10 show the stiffness and damping functions, respectively. The stiffness for

1.5
- + e = 0.1
Re(F, + F;)
i
1.0 —
e =0
0.5 —
T T T ' T ‘ T ]
1 2 3 4
Kk
Fig. 9 Stiffness function,
7
6 —|
5 —
4
- +
Im(l"2 + Fz)
uk 3 €= 0.1
/ A ’
2 £
1__
T T T ] T I ¥ 1
1 2 3 4

Fig 10. Damping function.
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the foundation of finite thickness is greater than that of the single rigid line inclusion and
approaches a value of 1.15 for k = 4. This is consistent with the findings of a number of other
investigators[{3-8, 12]. In particular, the results of Hradilek[12] for the stiffness and damping
functions agree with those shown in Figs. 9 and 10 for ¢ = 0. The damping is also greater for the
finite thickness foundation. This explains the fact that the peak response of the single inclusion
is greater than that of the foundation of finite thickness.

CONCLUSION

In this paper the dynamic response of a deep, narrow, rectangular foundation to antiplane
shear waves has been determined. These results also apply to the case of a shallow, wide,
rectangular foundation because of the nature of the antiplane formulation. The results were
found to be similar to those obtained by Wong and Trifunac[8] and Hradilek[12].

Similar considerations used in the solution of this antiplane problem can be applied to the
corresponding in-plane problem. Also, the results obtained here can be utilized in analyzing the
dynamic response of extended structures, i.e. structures that are supported on more than one
foundation.
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APPENDIX
Constder the following boundary value problem for Helmholtz’ equation in a thin domain’
dxx + lyy + Bl =0 (Al
HX0=1 0<X<L (A2)
X, h)=1 0<X<L (A3)
a0, )=G(Y) 0<Y<h (A4)
AL Y)=G(Y) 0<Y<h (AS)

The geometry s depicted in Fig. 11 This domain is representative of the mterior of the foundation in the full-space
problem where 4= wjd and L =2a

Under the transformation x = XIL, y= Ylh, G{(Y)=g(y), GAY) = ga(y), and (X, Y) = w(x, y) the boundary value
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Fig. 11 Geometry of thin domain.
problem becomes-

Nty + ltyy + 77824 =0 (A6)
u(x,0)=1 0<x<l (A7)
=1 O<x<«l (A8)
u®, =gy 0<y<l (A9)
u(l,y)=gfy) 0<y<i (AlD)

where
=k <1 (Al1)
and we require
Br=kL =01) (A12)
In order to construct an asymptotic expansion of the solution we take an ansatz of the form:
u~u+ i+ et + - (A13)
Substituting this mto eqns (A6) through (A10) gives
ul, =0 u(x,0)=1 W(x =1 (Al4)
u;,=—u‘;;’-ﬁ’u"" {x0=0 u(x,1)=0 (A15)
where n is an even number greater than or equal to two.
Solution of the above shows
u~1+Kn) (Al6)

We note that this solution will not, in general, satisfy eqas (A9) and (A10). Therefore, this so-called “outer expansion”
must be modified by the “boundary layer expansion™ near the ends of the domain[20).

Because of the nature of the antipiane formulation of the title problem we lose no generslity by considering
21(y) = g:(¥) = g(y). In this case the boundary layer construction is identical for both ends.

To construct the boandary layer expansion near x =0, we introduce the stretching transformation

¢=xn. (A17)
The boundary layer solution, U(¢, y), satisfies:
Uge+ U, + 82U =0 (A18)
U, y)=g(y) 0<y<l (A19)
U0 =1 0<é<> (A20)
Ug=1 0<§<m (A21)

In addition to satisfying eqns (AlSHMl)the boundary layer solution must be “matched” with the outer expansion
Since, for simplicity, wemeolmdom( only lesding order terms it is suficient to utilive the matching procedure of
Prandti{20), i.e we require

hm U(§, y)=lim u(x, y) (A22)
[ 20

where u(x, y) is given by eqn (A16)
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The ansatz for the inner expansion is
U~ U+ U+ n*U*+
which yields
U+ Uyp=0 U0,y)=g(y) U£0)=U%ED=1
‘_'hEU"(f,y)ﬂ

ktUNW==pU"2 U0,y)=UNE0)=UNED=0
+ matching condition

where n 15 an even number greater than or equsl to two
To leading order, the boundary layer expansion 1s

U~1+Y bye ™ smmay+0(n)

where the b, are the Fourier cofficients of g(y)- 1.

Since the boundary layer construction is the same near x = 1, we can wnite the composite expansion as [20]:

u~1 +2 b €™ 6 sin may+ 3 by € ™" sin may + X(n?)
L] m=]

where
&=1in

&=(1-1ln

261

(A24)

(A25)

(A27)

(A28)

(A29)

It is clear from eqn (A27) that whatever the form of g(y), its effect decays exponentially as we move away from the

ends of the rectangle.

Since u= wA and 7 = ¢2 we have that w~ A in the rectangle and deviates from that only in the boundary layer of
thickness 0(¢/2) near the ends of the rectangle. We interpret this in terms of the title problem as being a good
approximation to rigid body motion of the material contained between the two ngid line inclusions that represent the deep,

narrow, rectangulsr foundation.
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